Structural Characterization by CryoEM
By making membrane proteins soluble, and retaining their native state, structural characterization becomes possible. Utilizing cryo-electron microscopy, high-resolution structural data of membrane proteins can be obtained. Our work with cryo-EM focuses on isolating and structurally characterizing novel membrane protein complexes.
Antibody Generation by Animal Immunization
Injection of membrane proteins into animals with detergent causes aggregation and loss of relevant native protein structure for antibody generation. Hence, by using the Peptidisc to stabilize proteins in their native form, we can inject soluble membrane proteins into animals. This results in antibodies that recognize the protein of interest in its native form, upon injection of the complex.
Antibody Generation by Phage Display
Membrane proteins in the Peptidisc allows for the native form of a protein to be presented to a phage display library. Therefore the interactions found will be more useful, as non-native forms of the protein are excluded, and the library sorting can give biologically relevant binders faster.
Downstream Binding Characterization
As membrane proteins constitute a disproportionate fraction of drug targets, the characterization of drug interactions with target protein is very important. Because the Peptidisc holds membrane proteins in its native, functional state, the binding characteristics of substrates, as well as drugs, of the target protein can be assessed. This allows for effective and reliable Kd calculations, on and off rates, binding sites, and protein stability.